
Least Privilege Rendering in a 3D Web Browser

John Vilk1, David Molnar2, Eyal Ofek2, Chris Rossbach2, Benjamin Livshits2, Alexander Moshchuk2, Helen J. Wang2, and

Ran Gal2

1University of Massachusetts Amherst

2Microsoft Research

ABSTRACT
Emerging platforms such as Kinect, Epson Moverio, or Meta
SpaceGlasses enable immersive experiences, where applica-
tions display content on multiple walls and multiple devices,
detect objects in the world, and display content near those
objects. App stores for these platforms enable users to run
applications from third parties. Unfortunately, to display
content properly near objects and on room surfaces, these
applications need highly sensitive information, such as video
and depth streams from the room, thus creating a serious
privacy problem for app users.

To solve this problem, we introduce two new abstractions
enabling least privilege interactions of apps with the room.
First, a room skeleton that provides least privilege for ren-
dering, unlike previous approaches that focus on inputs alone.
Second, a detection sandbox that allows registering content
to show if an object is detected, but prevents the application
from knowing if the object is present.

To demonstrate our ideas, we have built SurroundWeb,
a 3D browser that enables web applications to use object
recognition and room display capabilities with our least priv-
ilege abstractions. We used SurroundWeb to build appli-
cations for immersive presentation experiences, karaoke, etc.
To assess the privacy of our approach, we used user sur-
veys to demonstrate that the information revealed by our
abstractions is acceptable. SurroundWeb does not lead to
unacceptable runtime overheads: after a one-time setup pro-
cedure that scans a room for projectable surfaces in about
a minute, our prototype can render immersive multi-display
web rooms at greater than 30 frames per second with up
to 25 screens and up to a 1,440×720 display.

1. INTRODUCTION
Advances in depth mapping, projectors, and object recog-

nition have made it possible to create immersive experiences
inspired by Star Trek’s Holodeck [2, 4, 9, 12, 13, 21]. Immer-
sive experiences display content on multiple walls and mul-
tiple devices, potentially making every object in the room
a target for interaction. These experiences can detect the
presence of objects in the room and adapt content to match,
as well as interact with users using gesture and voice.

Motivating example: Figure 1 shows a photograph of a
presenter using SurroundPoint, one of the applications we
explore in this paper, an immersive presentation application
running in an office with a high definition monitor and a
projector. One can think of SurroundPoint as immersive
PowerPoint. The monitor in the center shows the main pre-
sentation slide, while the projector shows additional content
“spilling out” of the slide and onto the walls of the room.

Figure 1: SurroundPoint: an immersive presentation experience.

Third-party apps raise privacy concerns: Emerging
high-field-of-view head-mounted displays such as Epson
Moverio or Meta SpaceGlasses [16], as well as established
platforms such as Microsoft Kinect, allow third party devel-
opers to create applications with immersive experiences. App
stores for these platforms enable users to download applica-
tions from untrusted third parties.

In these environments, an application detects objects us-
ing raw video or depth camera feeds, then renders content
near detected objects on a display window. Unfortunately,
giving raw depth and video feeds to an untrusted applica-
tion raises significant privacy concerns. From mobile phones,
we have learned how dangerous it is to give devices unre-
stricted access to sensor output. Even seemingly innocuous
information such as GPS traces can betray sensitive infor-
mation, such as inferring gender orientation from which bars
a person frequents [15]. Similarly, from raw video and depth
streams inside a home, it is likely possible to infer economic
status, health information, and other sensitive information.
Therefore we do not want to expose raw sensor data to appli-
cations. Our goal is to build applications in a least privilege
way: they receive the information they need to operate and
no more.

Least privilege rendering impossible today: Today’s
platforms can not provide least privilege rendering for im-
mersive room experiences. The window abstraction in today’s
browsers and operating systems gives applications control
over a two-dimensional rectangle of content on a display. To
render content coherently on surfaces in the world or near de-
tected objects, the application needs a mapping from window
coordinates to world coordinates. Because today’s operating
systems do not provide such a mapping, the application must
create it from video and depth camera feeds, which reveal

1

(a) Car racing news site. (b) Virtual windows (c) Road maps (d) Projected
awareness IM

Figure 2: Four web rooms enabled by SurroundWeb, shown with multiple projectors and an HDTV.

Experience Requires Description

SurroundPoint Room Skeleton Each screen in the room becomes a rendering surface for a room-wide presentation
(see Figure 1).

Car Racing News Site Room Skeleton Live video feed displays on a central monitor, with racing results projected around
it (see Figure 2a).

Virtual Windows Room Skeleton ”Virtual windows” render on surfaces around the room that display scenery from
distant places (see Figure 2b).

Road Maps Room Skeleton Active map area displays on a central screen, with surrounding area projected
around it (see Figure 2c).

Projected Awareness IM [4] Room Skeleton Instant messages display on a central screen, with frequent contacts projected
above (see Figure 2d). This is an example of Focus+Context from UI research [3].

Karaoke Room Skeleton Song lyrics appear above a central screen, with music videos playing around the
room (see Figure 5).

SmartGlass [17] Satellite Screens Xbox SmartGlass turns a smartphone or tablet into a second screen; a web page
can use Satellite Screens to turn a smartphone or tablet into a screen for the web
room.

Multiplayer Poker Satellite Screens Each user views their cards on a Satellite Screen on a smartphone or tablet, with
the public state of the game displayed on a surface in the room.

Advertisements Detection Sandbox Advertisements can register content to display near particular room objects de-
tected by the Detection Sandbox without knowing their locations or presence.

Kitchen Monitor Detection Sandbox The Kitchen Monitor displays alerts in the kitchen when water is boiling without
knowing this information through registering content to display near boiling water.

Figure 3: Web applications and immersive experiences that are possible with SurroundWeb.

too much information to the application.
Recent work on new abstractions for augmented reality

applications is also not sufficient. Examples of such work
include adding a higher-level “recognizer abstraction” to the
OS [10] or injecting noise into sensor data via “privacy trans-
forms” [11] to limit sensitive information exposure. These
approaches, however, focus on application inputs. In contrast,
we need a way to manage rendering. For example, knowing
that there are flat surfaces in the room, or even where they
are, does not by itself let an application place content on
those surfaces. Therefore no previous work provides a ren-
dering mechanism that enables least privilege for immersive
experiences.

Furthermore, previous approaches reveal when an object
is present. Sometimes, the mere presence of an object may be
sensitive, yet it would be beneficial to adapt content to the
object’s presence. Below we discuss an example application
that checks for boiling water in a kitchen. If boiling water
is present, the application displays an alert to the user in
a place the user can see it. No previous approach enables
an application to adapt itself to objects without leaking the
object’s presence to the application.

1.1 Least Privilege Rendering Abstractions
We introduce two novel abstractions that enable least priv-

ilege for immersive experiences. First, the Room Skeleton,

which captures the minimal information needed for render-
ing in a room. The Room Skeleton contains a list of Screens.
Each Screen is an object containing dimensions, relative lo-
cation, and input capabilities of a display. A trusted kernel
creates the Room Skeleton by scanning the room and looking
for monitors or projectable surfaces to expose as Screens to
the web page. In our prototype, this is a one-time scan, but
future work could dynamically update the list of Screens as
the room changes. We also show how to extend the Room
Skeleton with Satellite Screens that host web page content on
remote phones, tablets, or other devices. Web pages can query
the Room Skeleton to discover the room configuration but
cannot see raw sensor data. Based on the room configuration,
applications adapt their content, then tell the trusted kernel
to render specific content on a specific Screen. Therefore,
applications can render without needing raw video, depth, or
even a mapping of display coordinates to room coordinates.

Second, we introduce the Detection Sandbox, which medi-
ates between applications and object detection code. The
Detection Sandbox allows web pages to register content that
should show if a specific object is present. Web pages use spe-
cial CSS rules to inform SurroundWeb that content should
be rendered into the room near a specific object. The web
page, however, never learns whether the object is present. The
Detection Sandbox also runs code to detect natural user in-
puts and automatically maps them into mouse events for web

2

pages. Using the Detection Sandbox does place limitations
on applications. We discuss these limitations and directions
for relaxing them in Section 6. Despite these limitations, a
wide range of immersive experiences can be implemented
using the Detection Sandbox.

1.2 SurroundWeb
In this paper we want to show that the privacy-enhancing

abstraction above can be used to build realistic and attractive
immersive experiences. We chose against developing a new
platform, instead opting for showing how the least privilege
rendering abstraction can be retrofitted onto the existing
HTML stack, perhaps one of the most widely-used program-
ming platforms today.

To this end, we have built a novel 3D Browser called
SurroundWeb, which extends Internet Explorer to support
room rendering, object detection, and natural user interac-
tion capabilities. We use SurroundWeb as a platform for
experimentation. Figure 3 describes some web applications
that are possible with SurroundWeb, which we use for
illustration throughout the paper. It is our hope that Sur-
roundWeb will stoke innovation around novel 3D web ap-
plications and immersive room experiences.

Privacy guarantees: SurroundWeb makes three privacy
guarantees using our new abstractions. The Detection Sand-
box ensures detection privacy : the application execution does
not reveal the presence or absence of an object. For example,
an application can register an ad that should show if an en-
ergy drink can is present, but the application never learns if
an energy drink is in the room. The Detection Sandbox also
ensures interaction privacy : applications receive only inputs
that users explicitly authorize by their actions.

The Room Skeleton ensures rendering privacy : applica-
tions can render on multiple surfaces in a room, but they
learn only the number of surfaces, their relative positions,
and input capabilities supported by each.

1.3 Contributions
This paper makes the following contributions:

• Two novel abstractions, the Room Skeleton and Detec-
tion Sandbox that enable least privilege for application
display in immersive experiences. Previous work, in
contrast, has focused solely on least privilege for appli-
cation inputs.

• A novel system, SurroundWeb, that gives web pages
access to object recognition, projected screens inside
a room, and satellite screens on commodity phones or
tablets. SurroundWeb provide detection privacy, ren-
dering privacy, and interaction privacy, allowing users
to run untrusted web pages with confidence.

• We evaluate the privacy and performance of Sur-
roundWeb and conclude that it reveals less sensitive
information to applications than previous approaches,
and that its performance is encouraging.

2. SURROUNDWEB DESIGN
SurroundWeb exposes two novel abstractions to web

pages: The Room Skeleton and the Detection Sandbox.
These abstractions are provided by the trusted core of Sur-
roundWeb, as distinguished from the untrusted web ap-
plications or pages which render using these abstractions.

Figure 4: On the left, a 3D model reconstructed from raw depth
data. SurroundWeb detects projectable “screens” to create the
Room Skeleton, shown on the right. Web applications see only
the Room Skeleton, never raw depth or video data.

In Section 4 we describe how these abstractions are imple-
mented as extensions to the web programming model.

2.1 The Room Skeleton
Advances in depth mapping, such as KinectFusion [18],

take raw depth information and output 3D models that re-
construct the volume and shape of items that have been
“scanned” with depth cameras. These scans can be further
processed to find flat surfaces in the room that can host two-
dimensional content. Content can be shown on these surfaces
either by projectors pointed at the surfaces, by head-mounted
displays that overlay virtual content on surfaces (e.g. Meta
SpaceGlasses [16]), or by looking through a phone screen and
having the content superimposed on top of live video (e.g.
Layar [14]). Figure 4, on the left, shows a 3D model of a real
room and on the right shows the location of flat surfaces that
could host content.

In our prototype, we perform a one-time setup phase which
first detects flat surfaces in a room. Next, SurroundWeb
discovers all display devices that are available and determines
which of them can show content on the available surfaces.
Finally, SurroundWeb discovers which input events are
supported for which displays. For example, a touchscreen
monitor supports touch events, and depth cameras can be
used to support touch events on projected flat surfaces [20].
Future work could enable dynamic room scanning to account
for movement of objects in the room that could create or
obscure screens.

The result of scanning is the SurroundWeb Room Skele-
ton. We call this the Room Skeleton in analogy with the
skeleton pose detector found in the Microsoft Kinect. The
Kinect skeleton captures a core of essential information, the
position and pose of the user. This essential information is
sufficient for new experiences, but it does not include inci-
dental information in a video and depth stream. Our goal
with the room skeleton is to similarly capture a set of core
information that enables web pages to render while leaving
out unnecessary incidental information.

The Room Skeleton consists of a set of Screens. Each
Screen has a resolution, a relative location to other screens,
and a capabilities array. This is an array of strings that en-
codes the input events that can be accepted by the Screen.
For example, these may include “none,”“mouse,” or “touch.”
Web pages loaded in SurroundWeb access the Room Skele-
ton through JavaScript. By querying the Room Skeleton, web
pages can dynamically discover the room’s capabilities and
adapt their content accordingly. The web page can then ex-
plictly inform SurroundWeb which sub-portions of a page
should be rendered on which Screens, similar to the way to-
day’s web pages make rendering decisions at the granularity

3

Figure 5: Karaoke uses the Room Skeleton to render karaoke
lyrics across a TV and projectors.

of div elements. We describe the interface in Section 4.

Sample application: SurroundPoint: The Surround-
Point application described in Section 1 and pictured in
Figure 1 uses the Room Skeleton. The presentation page
contains several slides. Each slide has a set of “main” con-
tent, plus optional additional content. By querying the Room
Skeleton, the page adapts the presentation to different set-
tings. Consider the case where the room has only a sin-
gle 1,080p monitor and no projectors, such as running on a
laptop or in a conference room. Here, the Room Skeleton con-
tains only one Screen: a single 1,920×1,080 rectangle. Based
on this information, SurroundPoint knows that it should
show only the “main” content. In contrast, consider the room
shown in Figure 4. This room contains multiple projectable
Screens, exposed through the Room Skeleton. SurroundPoint
can detect that there is a monitor plus additional peripheral
Screens that can be used for showing the optional additional
content.

Sample application: Karaoke: Another application is
Karaoke shown in Figure 5. It uses the Room Skeleton to
render karaoke lyrics across the wall behind the TV, along
with some images to the left and right of the lyrics.

2.2 The Detection Sandbox
Advances in object detection make it possible to quickly

and relatively accurately determine the presence and loca-
tion of many objects or people in a room. Object detection
is a privacy challenge because the presence of objects can
reveal sensitive information about a user’s life. On the other
hand, object detection makes possible new experiences. This
creates a tension between privacy and functionality.

SurroundWeb resolves this tension by introducing a De-
tection Sandbox. All object recognition code runs as part of
the trusted core of SurroundWeb. Web pages never receive
events from this object recognition code directly. Instead,
pages register content up front with the Detection Sandbox
using a system of rendering constraints that can reference
physical objects. In Section 4 we show how these are ex-
posed via Cascading Style Sheets. After the page loads, Sur-
roundWeb checks this registered content against a list of
objects detected. If there is a match, SurroundWeb renders
the content, but the web page does not receive notification
that the content has been shown. SurroundWeb further
suppresses input events to the registered content, which en-
sures that user inputs do not reveal to the web page whether
the content has been shown or not.

Sample application: Kitchen Monitor: Using a detector
that determines whether water is boiling, a Kitchen Monitor
application could help users monitor their kitchens without
leaking information to the web server.

2.3 Satellite Screens
In our discussion of the Room Skeleton above, we talked

about fixed, flat surfaces present in a room. Today, however,
many people have personal mobile devices such as mobile
phones or tablets. SurroundWeb supports these through
an abstraction called a Satellite Screen. By navigating to
a URL of a SurroundWeb cloud service, phones, tablets,
or anything with a web browser can register with the main
SurroundWeb. JavaScript running in the web application
discovers the device’s screen size and input capabilities, then
communicates these to the SurroundWeb trusted core. The
SurroundWeb trusted core then adds the Satellite Screen
to the Room Skeleton and notifies the web page. We describe
our implementation in Section 4.

Sample application: Poker: Satellite Screens enable web
pages that need private displays. For example, a poker web
site might use a shared high-resolution display to show the
public state of the game. As players join personal phones or
tablets as Satellite Screens, however, the application shows
each player’s hand on her own device. Players can also make
bets by pressing input buttons on their own device. More gen-
erally, Satellite Screens allow web sites to build multi-player
experiences without needing to explicitly tackle creating a
distributed system, as all Satellite Screens are part of the
same DOM and exposed via the same Room Skeleton.

3. PRIVACY PROPERTIES
SurroundWeb provides three privacy properties: detec-

tion privacy, rendering privacy, and interaction privacy. We
explain each in detail, elaborating on how we provide them
in the design of SurroundWeb. We then discuss important
limitations and how they may be addressed.

3.1 Detection Privacy
Detection privacy means that a web page can customize

itself based on the presence of an object in the room, but
the web server never learns whether the object is present or
not. Without detection privacy, web applications or pages
could scan a room and look for items that reveal sensitive
information about a user’s lifestyle.

For example, an e-commerce site could scan a room to de-
tect valuable items, make an estimate of the user’s net worth,
and then adjust the prices it offers to the user accordingly.
For another example, a web site could use optical character
recognition to “read” documents left in a room, potentially
learning sensitive information such as social security num-
bers, credit card numbers, or other financial data.

Because the presence of these objects is sensitive, these
privacy threats apply even if the web page has access to
a high-level API for detecting objects and their properties,
instead of raw video and depth streams [10]. At the same time,
as we argued above, continuous object recognition enables
new experiences. Therefore, detection privacy is an important
goal for balancing privacy and functionality in immersive
room experiences.

SurroundWeb provides detection privacy using the De-
tection Sandbox. Our threat model for detection privacy in

4

SurroundWeb is that web pages are allowed to register arbi-
trary content in the Detection Sandbox. In SurroundWeb,
this registration takes the form of rendering constraints spec-
ified relative to a physical object’s position, which tell Sur-
roundWeb where to render the registered content. We de-
scribe this mechanism in more detail in Section 4. Because
the rendering process is handled by the trusted core of Sur-
roundWeb, the web server never learns whether an object
is present or not, no matter what is placed in the Detec-
tion Sandbox. Our approach places limitations on web pages,
both fundamental to the concept of the Detection Sandbox
and artifacts of our current approach. We discuss these in
detail in Section 6.

3.2 Rendering Privacy
Rendering privacy means that a web page can render into

a room, but it learns no information about the room be-
yond an explicitly specified set of properties needed to ren-
der. Without rendering privacy, web applications would need
continuous access to raw video and depth streams to provide
immersive room experiences. This, in turn, would reveal large
amounts of incidental sensitive information, such as the faces
and pictures of people present, items present in the room, or
the contents of documents left in view of the system. Without
this access, however, web applications would not know where
to place virtual objects on displays to make them interact
with real world room geometry. Therefore, rendering privacy
is an important goal for balancing privacy and functionality
in immersive room experiences.

The challenge in rendering privacy is creating an ab-
straction that enables least privilege for rendering. In Sur-
roundWeb, this abstraction the Room Skeleton. Our threat
model for rendering privacy is that web applications are
allowed to query the Room Skeleton to discover Screens,
their capabilities, and their relative locations, as we described
above. Unlike with the Detection Sandbox, we explicitly al-
low the web server to learn the information in the Room
Skeleton. The rendering privacy guarantee is different from
the detection private guarantee, because in this case we ex-
plicitly leak a specific set of information to the server, while
with detection privacy we leak no information about the pres-
ence or absence of objects. User surveys in Section 5 show
that revealing this information is acceptable to users.

3.3 Interaction Privacy
Interaction privacy means that a web page can receive

natural user inputs from users, but it does not see other in-
formation such as the user’s appearance or how many people
are present. Interaction privacy is important because sens-
ing interactions usually requires sensing people directly. For
example, without a system that supports interaction privacy,
a web page that uses gesture controls could potentially see a
user while she is naked or see faces of people in a room. This
kind of information is even more sensitive than the objects
in the room.

In SurroundWeb, we provide interaction privacy through
a combination of two mechanisms. First, the trusted core of
SurroundWeb runs all natural user interaction detection
code, such as gesture detection. Just as with the Detection
Sandbox above, web applications never talk directly to ges-
ture detection code. This means that web applications cannot
directly access sensitive information about the user.

Second, SurroundWeb maps from natural user gestures

Figure 6: Architectural diagram of SurroundWeb.

to existing web events, such as mouse events. We perform
this remapping to enable interactions with web applications
even if those applications have not been specifically enhanced
for natural gesture interaction. These web applications are
never explicitly informed that they are interacting with a user
through gesture detection, as opposed to through a mouse
and keyboard. Our choice to focus on remapping gestures to
existing web events does limit web applications. In Section 6
we discuss how this could be relaxed while keeping the spirit
of the SurroundWeb design.

4. IMPLEMENTATION
Our prototype, SurroundWeb, extends Internet Explorer

by embedding a WebBrowser control in a C# application.
Our core application implements the architecture shown in
Figure 6. We first describe its core capabilities, then we show
how they are exposed to web applications and pages through
HTML, CSS, and JavaScript.

Figure 6 displays an architectural diagram of Sur-
roundWeb. We show the parts we implemented in black.
Items below the dashed line form the trusted core of Sur-
roundWeb, while items above the dashed line are part of
web pages running on SurroundWeb.

4.1 Core Capabilities
Screen detection: Our prototype is capable of scanning a
room for unoccluded flat surfaces. Our prototype performs
offline surface detection: after a one-time scan, our proto-
type maps segments of rendered content into a room using
projectors. We use KinectFusion [18], as well as methods we
have designed for finding flat surfaces from noisy depth data
produced by Kinect.

Object detection sandbox: The trusted core of Sur-
roundWeb receives continuous depth and video feeds from
Kinect cameras attached to the machine running Sur-
roundWeb. On each depth and video frame, we run clas-
sifiers to detect the presence of objects. In our prototype,
we support detecting different types of soft drink cans, us-
ing a nearest-neighbor classifier based on color image his-
tograms. After an object is detected, SurroundWeb checks
the current web page for registered content, then updates its
rendering of the room.

Natural user interaction remapping: In addition to ob-
ject detection, the trusted core of SurroundWeb also con-
tinuously runs code for detecting people and gestures. We
use the the Microsoft Kinect SDK to detect user position
and gestures, including push and swipe gestures. Figure 7

5

Figure 7: SurroundWeb maps natural gestures to mouse
events. Here, the user uses a standard “push” gesture to tell Sur-
roundWeb to inject a click event into the web application.

shows a photograph of SurroundWeb detecting a user’s
hand position and that the user is performing a pushing ges-
ture. After a gesture is detected, SurroundWeb maps the
gesture to a mouse or keyboard event, then injects that event
into the running web page.

Satellite Screens: We host a SurroundWeb “satellite
screen service” in Microsoft Azure. Users can point their
phone, tablet, or other device with a browser to a specific
URL associated with the running SurroundWeb instance.
The front end runs JavaScript that discovers the browser’s
capabilities, then sets a cookie in the browser containing a
screen unique identifier and finally registers this new screen
with a service backend.

The backend informs the trusted core of the running Sur-
roundWeb instance that a new satellite screen is available.
The trusted core in turn creates an event informing the web
application of the new screen. If the web application ren-
ders to this screen, the trusted core ships the rendered image
to the backend, which then signals the front end to update
the web application showing in the browser. Input events
from the satellite screen are proxied to the web application
running on SurroundWeb similarly.

4.2 HTML Extensions
Web room: A web room is a web application that uses Sur-
roundWeb’s extensions to HTML, CSS, and JavaScript to
render content around a physical room. While a web applica-
tion is limited to a browser window on a single monitor, web
rooms can place content in multiple locations and displays
at once. Much like web applications, web rooms can embed
content, including scripts, from other web sites, which we
describe below.

Room tab: A room tab is analogous to a tab in a regular
desktop browser. Each room tab contains content from a
single web room. When the user switches room tabs, all of
the segments from the previous room tab vanish from the
screens in the room. This feature avoids issues with content
provenance; at any given time, the user can be assured that
all of the displayed content comes from one web room.

Trusted user interface: A standard desktop web browser
typically has a number of trusted components: A URL bar,
navigation buttons, and a row of open tabs. SurroundWeb
has a trusted UI that displays the URL of the currently-
displayed web room, controls for switching between room
tabs, and a display that outlines the segments that should
be visible on each screen in the room. This lets the user
determine the provenance of the content currently rendered
in the room, and ensures that web applications cannot hide

invisible content the user could unintentionally interact with.

Segments: SurroundWeb’s rendering abstractions use
rectangles of content called segments, which can be assigned
to particular Screens. The web revolves around rectangular
pieces of content called elements that web designers assemble
together into a tree structure: the Document Object Model
(DOM), which the browser displays as a web application.
Many of these elements correspond to HTML container tags,
which encapsulate a subtree of web application content.

We introduce the segment container tag to HTML, which
annotates arbitrary HTML content as a segment. For exam-
ple, “Hello World” would look like this:

<segment >Hello World!</segment >

The segment tag supports four size-related CSS attributes
that other container tags support: min-width, min-height,
width, and height. Other than these size-related attributes,
segment tags do not influence the 2D layout of the content
contained within them. segment tags differ from other HTML
tags, such as div, in that they are not visible to the user unless
the application specifies a target screen or object-relative
constraint for them using CSS (Section 4.3) or JavaScript
(Section 4.4).

By displaying subtrees of the DOM tree rather than creat-
ing a new DOM tree for each segment, we enable web rooms
to function as a single unit rather than a set of separate units.
This is convenient from a development standpoint, as web
developers can develop web rooms in the same manner as
web sites. If we instead implemented segments using frames,
then it would be more difficult for a web application to up-
date content across multiple segments at once, as each frame
has its own separate DOM tree.

Content rendering: The architecture of SurroundWeb’s
renderer, displayed in Figure 6, resembles a conventional web
browser. The block marked “SurroundWeb API” encapsu-
lates existing browser HTML, CSS, and JavaScript function-
ality, and our extensions described below. The API commu-
nicates with the renderer, which renders the individual seg-
ments that the web room identifies using existing 2D browser
rendering technology (the “2D Segment Renderer”).

When the user navigates to a web application, our pro-
totype first renders the entire web application using Inter-
net Explorer. We then extract individual bitmaps for each
segment tag. SurroundWeb combines each rendered seg-
ment with the information that the web room provides on
where it should be placed. If the web room places a segment
using the screen abstraction, then SurroundWeb is aware
of the particular screen that it should display the content on,
and can immediately render the content in the room. If the
web room places a segment with object-relative constraints,
then the renderer extracts constraints and solves them with
a constraint solver to determine the rendering location of the
segment.

All final rendering locations are passed to “Room Tab
Rendering”, which displays the rendered segments in the
room using attached display devices. When the web room
alters the contents of a segment, the prototype captures a new
bitmap and updates the rendered segment in the room. As
a result, our prototype supports dynamic animated content.

4.3 CSS Extensions
Web applications and pages use Cascading Style Sheets

(CSS) to style and position content on the page. Sur-

6

Property Description

getAll() (Static) Returns an array of all of the screens in
the room.

id A unique string identifier for this screen.
ppi The number of pixels per inch.
height Height of the screen in pixels.
width Width of the screen in pixels.
capabilities List of JavaScript events supported on this screen.
location Location of the screen in the room as an object

literal, with fields ’ul’ (upper-left) and ’lr’ (lower-
right) each containing an object literal with x, y,
and z fields.

Figure 8: Properties of each screen object.

roundWeb adds CSS object-relative constraints for declara-
tively specifying the position of segment elements relative to
physical objects in the room, such as left-of or below. CSS
is a natural fit for these constraints, as CSS already controls
the placement of content through various attributes, such as
position and margin.

Each constraint can be assigned a list of object names,
which specifies how the segment should be placed among
objects detected in the room. For example, a web room may
use the below constraint assigned to the object EnergyDrink
on a segment containing a tea advertisement. We assume a
central list of well-known list of names for objects whose de-
tection may or may not be supported by the specific instance
of SurroundWeb, just as the web today has a well-known
list of names for events.

4.4 JavaScript Extensions
Current browsers expose comprehensive functionality

through JavaScript for dynamically responding to events and
altering page structure, content, and style. It is possible to
construct an entire web page on-the-fly using JavaScript and
standard browser APIs to inject HTML and CSS into the
page. SurroundWeb continues this tradition through ex-
posing all of its functionality through JavaScript.

Screens: Screens are a read-only global property of the cur-
rent room. The web room can retrieve an array of all of the
screens in the room through the Screen.getAll() procedure,
and can use the properties of each screen to determine how
to distribute content among them.

Figure 8 displays the properties available on each screen ob-
ject. Two properties are worth discussing further in context
of the web: id and capabilities. We add the id property
to screens for the web environment so they can be referenced
from dynamically constructed HTML and CSS. Since HTML
and CSS are text formats, they are require this text-based
identifier in order to reference individual screens.

The capabilities property is an array of strings that
correspond to JavaScript events that are supported on that
particular screen. Every JavaScript event type has a stan-
dardized name that web applications use to register event
listeners with the browser. Modern web browsers have events
for many devices, including accelerometers, touch screens,
mice, and keyboards. Web rooms can use the capabilities

property to determine which events are appropriate to listen
for on a particular screen, and to make decisions on where
certain interactive content should be placed.

Our prototype does not directly extend the CSS parsing
of Internet Explorer. Instead, we emulate these extensions
using a JavaScript API that can be called by web applications.
The trusted SurroundWeb renderer as part of the rendering

process compiles these constraints into a format accepted by
a constraint solver, then attempts to solve them. If successful,
the renderer uses the solution to place the segments in the
room.

Segments: Segments can be dynamically con-
structed like any other HTML element: use
document.createElement("segment") to create a new
<segment> tag, modify its properties, and then insert it
somewhere into the DOM tree so it becomes “active”. To
display an active segment on a particular screen, the web
room must assign the screen’s id property to the segment’s
screen property. The size of the segment and object-relative
constraints can be specified using the standard JavaScript
APIs for manipulating CSS properties.

4.5 Embedding Web Content
We have described room tabs as analogous to tabs in a

desktop web browser: each room tab encapsulates content
from a single web room. We now discuss how to handle
embedding of content from different origins inside a single
room tab. In this discussion, we use the same web site prin-
cipal as defined in the same-origin policy (SOP) for web
rooms, which is labeled by a web site’s origin: the 3-tuple
〈protocol, domainname, port〉.

In an effort to be backward-compatible and to preserve
concepts that are familiar to the developer, we extend the se-
curity model present on the web today: web rooms can embed
content from other origins, such as scripts and images, and
can use Content Security Policy (CSP) to restrict which ori-
gins it can embed particular types of content from. Like in the
web today, scripts embedded from other origins will have full
access to the web room’s Document Object Model (DOM),
which includes all browser APIs, SurroundWeb extensions,
and segments defined by the web room.

We preserve this property for compatibility reasons, as
many current web sites and JavaScript libraries rely on the
ability to load popular scripts, such as jQuery, from Con-
tent Distribution Networks (CDNs). Since SurroundWeb
extends HTML, JavaScript, and CSS, these existing libraries
for web sites will still have utility in web rooms.

Web rooms can use the iframe tag to safely embed content
from untrusted origins without granting them access to the
SurroundWeb extensions. In the current web, a frame has
a separate DOM from the embedding site. If the frame is
from a different origin than the embedding site, then the
embedded origin and the embedding origin cannot access
each other’s DOM. We extend CSP to allow web rooms
to control whether or not particular origins can access the
SurroundWeb extensions from within a frame. If a web
room denies an embedded origin access to these extensions,
then the iframe will render as it does today: to a fixed-
size rectangle that the embedding origin can control the
placement of. If the web room allows an embedded origin
access to these extensions, then the iframe will be able to
render content to that web room’s room tab.

4.6 Walkthrough: Karaoke Application
To illustrate how a web room can be developed using Sur-

roundWeb, we will walk through a sample Karaoke appli-
cation, shown in Figure 5. This web room renders karaoke
lyrics above a central screen, with a video on the central
screen and pictures around the screen. Related songs are
rendered on the table.

7

The web room contains the following HTML:

<segment id="lyrics"><!--Lyrics HTML --></segment >
<segment id="video"><!--Video HTML --></segment >
<segment id="related">

<!--Related songs HTML --></segment >

The web room must scan the Room Skeleton to assign the
segments specified in the HTML to relevant Screens.
1) Using JavaScript, the web room locates the vertical screen
with the highest resolution, which will contain the video:

var screens = Screen.getAll (), bigVScn , maxPpi = 0;
function isVertical(scn) {

var scnLoc=scn.location ,ul=scnLoc.ul,lr=scnLoc.lr,
zDelta = Math.abs(ul.z - lr.z),
xDelta = Math.abs(ul.x - lr.x),
yDelta = Math.abs(ul.y - lr.y);

return zDelta > xDelta || zDelta > yDelta;
}
// Find the highest resolution vertical screen
screens.forEach(function(scn) {

if (isVertical(scn) && scn.ppi > maxPpi)
bigVScn = scn;

maxPpi = bigVScn.ppi;
});
// Assign video to screen.
document.getElementById(’video’)

.setAttribute(’screen ’, bigVScn.id);

2) The web room determines the closest vertical screen above
the main screen, and renders the karaoke lyrics to it. In the
code below, z is the distance from the floor:

var aboveScn , bigLoc = bigVScn.location;
screens.forEach(function(scn) {

if (! isVertical(scn) || scn === bigVScn) return;
var scnLoc=scn.location ,ul=scnLoc.ul,lr=scnLoc.lr;
if (lr.z > bigLoc.ul.z) {

// scn is above bigVScn
if (aboveScn) {

// Is scn closer to bigVScn than aboveScn?
if (aboveScn.location.lr.z > lr.z)

aboveScn = scn;
}
else aboveScn = scn;

}
});
// Assign lyrics to screen.
document.getElementById(’lyrics ’)

.setAttribute(’screen ’, aboveScn.id);

3) For the listing of related videos, the application locates
the largest horizontal screen in the room:

var bigHScn , maxArea = 0;
screens.forEach(function(scn) {

var area = scn.height*scn.width;
if (! isVertical(scn) && area > maxArea) {

maxArea = area; bigHScn = scn;
}

});
// Assign related videos to screen.
document.getElementById(’related ’)

.setAttribute(’screen ’, aboveScn.id);

4) Finally, the application assigns random media to render
on other screens:

screens.forEach(function(scn) {
if(scn!== aboveScn &&scn!= bigHScn &&scn!= bigVScn)

renderMedia(scn);
});
function renderMedia(scn) {

var newSgm = document.createElement(’segment ’);
newSgm.setAttribute(’screen ’, scn.id);
newSgm.appendChild(constructRandomMedia ());
document.body.appendChild(newSgm);

}

Now that the rendering code has finished, the karaoke appli-
cation can update each screen in the same manner that a

Figure 9: Excerpt from our survey asking respondents to evaluate
information released by SurroundWeb. On the right, a color
image of a room. On the left, a visualization of the information
provided by our screen abstraction about the same room. Our
instructions were as follows: For each question, only consider the
information explictly displayed in the two images below. Which
image contains more information that you consider “private”?
To preserve the anonymity of the submission, we have modified
the image to remove an author’s face.

vanilla web site updates individual HTML elements on the
page. Should the chosen configuration be suboptimal for the
user, the Karaoke application can provide controls that allow
the user to dynamically choose the rendering location of the
segments.

5. EVALUATION
Our focus in this section is two-fold. We want to evalu-

ate whether our design delivers adequate privacy guarantees,
which we do via a user study and whether the performance
of SurroundWeb is acceptable.

5.1 Privacy
Room skeleton sensitivity: We used surveys to measure
user privacy attitudes toward the Room Skeleton information
that SurroundWeb reveals to web pages. We first asked sur-
vey participants to read a short summary of the capabilities
of SurroundWeb-like systems.

Next, we showed users two pictures: a color picture of a
room and a visualization of the data exposed from that room
by the Room Skeleton. An example of such a survey is shown
in Figure 9. Prior to running our surveys, we reviewed our
questions, the data we proposed to collect, and our choice of
survey provider with our institution’s group responsible for
protecting the privacy and safety of human subjects.

Out of 50 respondents, 78% claimed that they felt that the
raw data was more sensitive than the information that Sur-
roundWeb exposes to web pages. After combing through
the data to filter out people who did not understand the
survey and to reassign those who mistakenly chose the in-
formation they felt was most sensitive, that figure changes
to 87.5%. This supports our choice of data to reveal in the
Room Skeleton.

Web room-specific surveys: Next, we developed a sur-
vey that explored a broader set of possible data that could
be released to web rooms by SurroundWeb in the con-
text of different web rooms. We presented 50 survey-takers
with three different web room descriptions: a “911 Assist”
application that detects falls and calls 911, a “Dance Game”
that asks users to mimic dance moves, and a “Media Player”
that plays videos. We asked them which information they
would feel comfortable sharing with each web room. We have
the following additional findings.

8

Room type Scanning Time (s) # Planes Found

Living room # 1 30 19
Office 70 7
Living room #2 17 13

Figure 10: Scanning times and results for 3 representative rooms.

• Users have different privacy preferences for different appli-
cations. User privacy preferences depended on the benefit
the application would provide. For example, when asked
about a hypothetical 911 Assist app, one person stated,
“It seems like it would only be used in an emergency and
only communicated to emergency personnel”, and another
said “Any info that would help with 911 is worth giving”.
Users also evaluated whether the application needed the
information. For example, one person said, “A dance game
would not need more information than the general outline
or placements of the body”. Finally, in some cases respon-
dents thought creatively about how an application could
use additional information. In particular, one respondent
suggested that the Video Player application could adjust
the projection of the video to “where you are watching”.
These support a design that gives different fine-grained
permission levels to different web rooms.

• Users did not distinguish between screen sizes and room
geometry. “Screen sizes” refers only to the number, orien-
tation, and capabilities of screens, while “room geometry”
refers to the relative position of screen surfaces to each
other. Before conducting our surveys, we hypothesized that
users would find room geometry to be more sensitive than
screen sizes. In fact, our data does not confirm this hy-
pothesis. This suggests that a reasonable default for the
screen abstraction would give web rooms access to room
geometry as well as screen size and capabilities. This re-
sult influenced the information that we decided to release
through the web extensions.

5.2 Performance
Room skeleton performance: SurroundWeb performs
a one-time scan of a room to extract planes suitable for
projection, using a Kinect depth camera. Figure 10 shows
the results of scanning three fairly typical rooms we chose. No
room took longer than 70 seconds to scan. This is reasonable
as a one-time setup cost for SurroundWeb.

Detection sandbox constraint solving time: Sur-
roundWeb uses a constraint solver to determine the po-
sition of segments that web sites register with the Detection
Sandbox in the room without leaking the presence or loca-
tion of an object to the web application. The speed of the
constraint solver is therefore important for web applications
that use the Detection Sandbox. We considered two scenarios
for benchmarking the performance of the constraint solver.

• We considered the scenario where the web application reg-
isters only constraints of the form “show this segment near
a specific object.” Figure 11 shows how solving time in-
creases for this scenario as the number of registered seg-
ments in a single web application grows. While we expect
pages to have many fewer than 100 segments registered
with the Detection Sandbox, the main point of this exper-
iment is that constraint solving time scales linearly as the
number of segments grow.

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

C
o

n
st

ra
in

t
so

lv
in

g
ti

m
e

(s
ec

)

Number of segments

Figure 11: Solver performance as the number of segments regis-
tered with the Detection Sandbox increases. The error bars indi-
cate 95% confidence intervals.

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Fr
am

es
 p

er
 s

ec
o

n
d

 (
FP

S)

Number of 192x108 screens

0

10

20

30

40

50

60

70

540x480 810x640 1440x720 1920x1080

Fr
am

es
 p

er
 s

ec
o

n
d

 (
FP

S)

Screen size

Figure 12: On the left, maximum rendering frame rate as the
number of same-size screens increases. On the right, the maximum
rendering frame rate of a single screen as its size increases. Error
bars indicate 95% confidence intervals.

• Next, we considered the scenario where the web page uses
the solver for more complicated layout. We tested a scene
with 12 detected objects and 8 segments. We created a
“stress” script with 30 constraints, including constraints for
non-overlap in area between segments, forcing segments to
have specified relative positions, specified distance bounds
between segments in 3D space, and constraints on the line
of sight to each segment. The constraints were solved in
less than 4 seconds on one core of an Intel Core i7 2.2 GHz
processor.

In both cases, only segments that use constraints incur la-
tency. Segments rendered via Screens can display before solv-
ing finishes.

Rendering performance: We ran a benchmark that mea-
sures how fast our prototype can alter the contents of HTML5
canvas elements mapped to individual screens. Figure 12
displays the results. In the left configuration, the bench-
mark measures the frame rate as it increases the number
of 192×108 screens.

In the right configuration, the benchmark measures the
frame rate as it increases the size of a single screen. When
there are 25 or fewer screens and screens with resolution
up to 1,440×720, the prototype maintains an acceptable
frame rate above 30 FPS. These numbers could be improved
by tighter integration into the rendering pipeline of a web
browser.

At present, our prototype must copy each frame multiple
times and across language boundaries, as our prototype is

9

written in C# but we embed a native WebBrowser control.
Despite these limitations, our prototype achieves reasonable
frame rates.

6. LIMITATIONS AND FUTURE WORK
Detection, Rendering, and Interaction privacy presented in

Section 3 are variants on a theme: enabling least privilege for
immersive room experiences. In each case, we provide an ab-
straction that supports web pages, yet reveals the minimum
information. We discuss limitations to the privacy properties
provided by SurroundWeb, along with other future work.

Social engineering: Web applications can ask users to ex-
plicitly tell them if an object is present in the room or send
information about the room to the site. These attacks are
not prevented by SurroundWeb, but they also could be
carried out by existing web applications.

Browser fingerprinting: Browser fingerprinting allows a
web page to uniquely identify a user based on the instance
of her browser. Our extensions add new information to the
web browser that could be used to fingerprint the user, such
as the location and sizes of screens in the room. We note
that browser fingerprinting is far from a solved problem, with
recent work showing that even seemingly robust countermea-
sures fail to prevent fingerprinting in standard browsers [1,
19]. We also do not solve the browser fingerprinting problem.

Clickjacking: Clickjacking is the problem of a malicious
site overlaying UI elements on the elements of another site,
causing the malicious site to intercept clicks intended for
the other site. As a result, the browser takes an unexpected
action on behalf of the user, such as authorizing a web site
to access the user’s information.

SurroundWeb forbids segments to overlap, guaranteeing
that a user’s input on a screen is received by the visible
segment. This property allows web rooms to grant iframes

access to the SurroundWeb API with the assurance that
the iframe cannot intercept screen input events intended for
the embedding site.

However, because SurroundWeb extends the existing
web model for compatibility, it is possible that a web room has
embedded a malicious script that uses existing web APIs to
create an overlay within the segment. Thus, SurroundWeb
does not solve the clickjacking problem as it is currently faced
on the web. That said, we also do not make the clickjack-
ing problem worse, and we do not believe our abstractions
introduce new ways to perform clickjacking.

Side channels: The web platform allows introspection on
documents, and different web browsers have subtly different
interpretations of web APIs. Malicious JavaScript can use
these differences and introspection to learn sensitive infor-
mation about the user’s session. One key example is history
sniffing, where JavaScript code from malicious web appli-
cations was able to determine if a URL had been visited
by querying the color of a link once rendered. While on
recent browsers this property is not directly accessible to
JavaScript, recent work has found multiple interactive side
channels which leak whether a URL has been visited [22].

Because SurroundWeb extends the web platform, side
channels that exist on the current web are still present in
SurroundWeb. There may also be new side channels that
reveal sensitive information about the room. For example,
performance may be different in the presence or absence of an
object in the room. For another example, our mapping from

natural gestures to mouse events may reveal that the user is
interacting with gestures or other information about the user.
Characterizing and defending against such side channels is
future work.

Extending the detection sandbox: In our prototype, the
Detection Sandbox allows only for registering content to be
displayed when specific objects are detected. We could ex-
tend this to enable matching color of an element to the color
of a nearby object. As a further step, web applications might
specify portions of a page or entire pages that are allowed
to have access to object recognition events, in exchange for
complete isolation from the web server.

These approaches would require careful consideration of
how to prevent leaking information about the presence of an
object through JavaScript introspection on element proper-
ties or other side channels. Our Detection Sandbox, however,
does appear to rule out server-side computation dependent
on object presence, barring a sandboxed and trusted server
component. For example, cloud-based object recognition may
require sandboxed code on the server.

Because our sandbox prevents user inputs from reaching
registered content, in our prototype users can see object-
dependent ads but cannot click on these ads. Previous work
on privacy-preserving ads has suggested locally aggregating
user clicks or using anonymizing relay services to fetch addi-
tional ad content [7]. We could explore these approaches to
create privacy-friendly yet interactive object-dependent ads.

Multiple room tabs: In our prototype, we do not simul-
taneously show multiple tabs to prevent phishing attacks.
This limitation might be overcome with a trusted UI that
indicates which segments belong to which web pages. For
example, the trusted core could pick a unique color for each
page origin, then draw a solid border of that color around
the segment when it renders.

7. RELATED WORK
Immersive Experiences: Illumiroom uses projectors com-
bined with a standard TV screen to create gaming expe-
riences that “spill out” of the TV and into the room [12].
Azuma surveys the broader field of augmented reality, defined
as an experience with real-time registration of 3-D overlays
on the real world [2]. Panelrama [23] extends HTML to en-
able building multi-screen experiences, but it does not handle
room scanning or object detection. The ARGON mobile web
browser also extends HTML to enable building augmented
reality applications but it does not add support for satellite
screens as we do [6]. Recent work argues these immersive
experiences need first class support from operating systems,
including new abstractions to enable improved security and
improved performance [5].

Abstractions for Privacy: Previous work introduced the
recognizer abstraction in an OS as the fundamental unit for
application input. A recognizer wraps computer vision al-
gorithms and allows applications to request only the data
they need. Our approach in contrast maps natural inputs to
traditional inputs such as mouse and keybaord. Darkly [11]
performs privacy transforms on sensor inputs using com-
puter vision algorithms (such as blurring, extracting edges,
or picking out important features), but it has no support for
rendering. In access visualization, sensor-access widgets [8]
were proposed to reside within an application’s display with
an animation to show sensor data being collected by the ap-

10

plication. Previous work, however, does not handle the case
of rendering.

8. CONCLUSION
We showed through surveys that the information revealed

by SurroundWeb is acceptable. After a one-time setup
procedure that scans a room for projectable surfaces in about
a minute, our prototype can render immersive multi-display
web rooms at greater than 30 frames per second with up to 25
screens and up to a 1440×720 display. Our abstractions are
the first to enable least privilege for rendering in immersive
experiences.

9. REFERENCES
[1] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. GÃijrses,

F. Piessens, and B. Preneel. FPDetective: Dusting the web for
fingerprinters. In ACM CCS, 2013.

[2] R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and
B. MacIntyre. Recent advances in augmented reality. Computer
Graphics and Applications, 21(6):34–47, 2001.

[3] P. Baudisch, N. Good, and P. Stewart. Focus plus context
screens: Combining display technology with visualization
techniques. In Proceedings of UIST ’01, 2001.

[4] J. Birnholtz, L. Reynolds, E. Luxenberg, C. Gutwin, and
M. Mustafa. Awareness beyond the desktop: exploring
attention and distraction with a projected peripheral-vision
display. In Proceedings of Graphics Interface 2010, GI ’10,
pages 55–62, Toronto, Ont., Canada, Canada, 2010. Canadian
Information Processing Society.

[5] L. D’Antoni, A. M. Dunn, S. Jana, T. Kohno, B. Livshits,
D. Molnar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas,
M. Veanes, and H. J. Wang. Operating system support for
augmented reality applications. In 14th Workshop on Hot
Topics in Operating Systems (HotOS), 2013.

[6] B. M. et al. Argon mobile web browser, 2013.
https://research.cc.gatech.edu/kharma/.

[7] S. Guha, B. Cheng, and P. Francis. Privad: Practical Privacy in
Online Advertising. In Networked Systems Design and
Implementation, 2011.

[8] J. Howell and S. Schechter. What You See is What They Get:
Protecting users from unwanted use of microphones, cameras,
and other sensors. In Web 2.0 Security and Privacy, IEEE,
2010.

[9] E. Hutchings. Augmented reality lets shoppers see how new
furniture would look at home, 2012. http:
//www.psfk.com/2012/05/augmented-reality-furniture-app.html.

[10] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits, H. J.
Wang, and E. Ofek. Enabling fine-grained permissions for
augmented reality applications with recognizers. In USENIX
Security Symposium, 2013.

[11] S. Jana, A. Narayanan, and V. Shmatikov. A scanner darkly:
Privacy for perceptual applications. In IEEE Symposium on
Security and Privacy, 2013.

[12] B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson. IllumiRoom:
peripheral projected illusions for interactive experiences. In
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’13, pages 869–878, New York, NY,
USA, 2013. ACM.

[13] S. K. Kane, D. Avrahami, J. O. Wobbrock, B. Harrison, A. D.
Rea, M. Philipose, and A. LaMarca. Bonfire: a nomadic system
for hybrid laptop-tabletop interaction. In Proceedings of the
22nd annual ACM symposium on User interface software and
technology, UIST ’09, pages 129–138, New York, NY, USA,
2009. ACM.

[14] Layar. Layar catalogue, 2013. http://www.layar.com/layers.

[15] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and
J. Zhang. Expectation and Purpose: Understanding Users’
Mental Models of Mobile App Privacy Through Crowdsourcing.
In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing, UbiComp ’12, pages 501–510, New York, NY, USA,
2012. ACM.

[16] I. Meta View. Meta developer kit, 2013.
http://www.meta-view.com/about.

[17] Microsoft. Xbox SmartGlass, 2014.
http://www.xbox.com/en-US/SMARTGLASS.

[18] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and
A. Fitzgibbon. KinectFusion: Real-time dense surface mapping
and tracking. In 10th IEEE International Symposium on
Mixed and Augmented Reality, 2011.

[19] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless Monster: Exploring the
Ecosystem of Web-based Device Fingerprinting. In Proceedings
of the IEEE Symposium on Security and Privacy, S.
Francisco, CA, May 2013.

[20] K. Parrish. Kinect for windows, ubi turns any surface into
touch screen, 2013. http://www.tomshardware.com/news/
kinect-ubi-touch-screen-windows-8-projector,23887.html.

[21] J. Rekimoto and M. Saitoh. Augmented surfaces: a spatially
continuous work space for hybrid computing environments. In
Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, CHI ’99, pages 378–385, New York, NY,
USA, 1999. ACM.

[22] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson. I
still know what you visited last summer. In IEEE Symposium
on Security and Privacy, 2011.

[23] J. Yang and D. Wigdor. Panelrama: enabling easy specification
of cross-device web applications. In M. Jones, P. A. Palanque,
A. Schmidt, and T. Grossman, editors, CHI, pages 2783–2792.
ACM, 2014.

APPENDIX
As described above, we presented 50 survey-takers with three
different web room descriptions: a “911 Assist” application
that detects falls and calls 911, a “Dance Game” that asks
users to mimic dance moves, and a “Media Player” that plays
videos. We gave participants a description of the application,
and asked: What information would you be comfortable giving
to this application? Choose as many as you like. Participants
chose from the visualizations of different data available to
SurroundWeb shown in Figure 13.

Participants could choose all, some, or none of the choices
as information they would be comfortable revealing to the
application. As we described above, we found that the in-
formation users were willing to reveal changed based on the
application’s description.

11

(a) Large flat surfaces: size
(height and width) and
orientation (standing
up/laying down)

(b) Location of large flat
surfaces

(c) Head position (d) Hand positions

(e) Body position (f) Face

(g) Raw image

Figure 13: Examples of images used in the survey. To preserve
the anonymity of the submission, we have anonymized the face of
an author in these images.

12

